Normal view MARC view ISBD view

Identification of Silver Nanoparticle-shaping Tridax procumbens Phytoconstituent by Theoretical Simulation and Experimental Correlation

By: Irfan, N.
Contributor(s): Puratchikody, A.
Publisher: Mumbai Indian Journal of Pharmaceutical Science 2019Edition: Vol.81(5), Sep-Oct.Description: 900-912p.Subject(s): PHARMACEUTICSOnline resources: Click here In: Indian journal of pharmaceutical sciencesSummary: In this present work, silver nanoparticles were synthesized, the biological mechanisms involved and interaction routes were explained using density function theory, adsorption site identification and blend binding energy calculations. The results indicated that among the 18 molecules of a methanol fraction of Tridax procumbens only the phytoconstituent, baicalin was accountable for materialization of the silver nanoparticle. Baicalin formed six π-cationic interactions with a silver ion, which formed the repulsive network between each other atom to rule out the binding of nitrate ion. The HOMO, LUMO and binding energies conformed that baicalin-Ag complex was stable. These fingerprint simulation studies pointed out the easy way for researchers in green nanotechnology for identifying nanoparticle-forming phytoconstituents from the plant extracts in future
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Pharmacy
Archieval Section
Not for loan 2020-2021113
Total holds: 0

In this present work, silver nanoparticles were synthesized, the biological mechanisms involved and interaction routes were explained using density function theory, adsorption site identification and blend binding energy calculations. The results indicated that among the 18 molecules of a methanol fraction of Tridax procumbens only the phytoconstituent, baicalin was accountable for materialization of the silver nanoparticle. Baicalin formed six π-cationic interactions with a silver ion, which formed the repulsive network between each other atom to rule out the binding of nitrate ion. The HOMO, LUMO and binding energies conformed that baicalin-Ag complex was stable. These fingerprint simulation studies pointed out the easy way for researchers in green nanotechnology for identifying nanoparticle-forming phytoconstituents from the plant extracts in future

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha